

The Adaptive Network Architecture for Formations of Heterogeneous Spacecraft
Dipa Suri, Lockheed Martin Advanced Technology Center

Adam Howell, Lockheed Martin Advanced Technology Center
3251 Hanover Street
Palo Alto, Ca. 94304

Abstract Many future earth and space science missions, such as
the Magnetospheric Multiscale Mission and Terrestrial Planet
Finder, have been proposed that require a high level of
coordination between multiple heterogeneous sensors and
spacecraft to achieve their mission objectives. On-board
autonomy and distributed processing are additional key
technologies that can improve the fidelity and quality of the
missions' data products while reducing the associated ground
support. This paper will present the development of an agent-
based software architecture for real-time embedded systems
that provides a flexible, reconfigurable framework to support
these technologies.

A. INTRODUCTION

Satellite formations are a key element of the Earth-Sun
System enterprise’s strategic plan for future space and earth
science missions. Among the important themes proposed by
the Advanced Information Systems Technology (AIST)
program is the deployment of missions comprised of multiple
autonomous spacecraft that use a distributed, agent-based
architecture. Furthermore, it is prudent for implementations
of such architectures to leverage mature terrestrial standards,
e.g. TCP/IP, to reduce development and validation costs. The
potential benefits of these resulting systems are multifold;
autonomy leads not only to flexibility and system robustness,
but more importantly it can reduce the life-cycle cost for both
the space and ground elements.

To help realize this vision, we are developing the Adaptive
Network Architecture (ANA) composed of a set of
heterogeneous software agents that interact and collaborate
through message-based communication. The ANA is
fundamentally responsible for ensuring that mission
objectives are met by autonomously responding in real-time
to both environmental events and ground user requests for (i)
the optimal allocation of computing and communication
resources; (ii) instrument reconfiguration as part of either
current mission needs or fault management; and (iii)
distributed science processing and data aggregation. The goal
is to provide an integrated solution for all spacecraft
formation operations that would allow ground users to
operate a distributed aperture sensor or cluster as if it were a
single instrument.

Section B will present an overview of the software
architecture, common agent functionality, and
communication schemes composing the ANA. A detailed
description of the various agents comprised in the ANA will
be provided in Section C, followed by an example mission
implementation in Section D. Finally, a discussion of future

work and some concluding remarks will be presented in
Sections E and F, respectively.

B. ARCHITECTURE OVERVIEW

The ANA is based upon the concept of software agents.
Many diverse definitions for software agents can be found in
the literature [1], however we will define an agent to be a
software entity that has the characteristics of communication,
autonomy, and collaboration. The ability to communicate is
relatively self-explanatory, while the characteristics of
autonomy and collaboration require clarification. By
autonomy, we mean that the agent is able to make
independent decisions in support of its internal goals without
direct operator intervention (although this does not
necessarily apply to all decisions). Collaboration means that
each agent must be able to interact and negotiate with other
agents in order to achieve its goals.

The ANA distributes the responsibility for different aspects
of a science mission between several component agent types.
A schematic of the ANA agents and supporting services is
shown in Fig. 1. Each agent type shown has its own tasks to
perform, while more complex processes are achieved through
interactions and collaborations of multiple agents. The ANA
provides additional flexibility by allowing different
configurations of agents to be instantiated at system
initialization or runtime, depending on the desired
functionality. By default, the Executive and Computing
Agents are singletons required on all hosts. However, subsets
of the other agents can be created depending on the specific
host’s hardware, mission objectives, and available computing
resources. A typical system running the ANA would consist
of (i) multiple hosts and (ii) multiple instruments/payloads
either on a single or multiple spacecraft.

C. AGENT ANATOMY

The characteristics described above cover the basic
functionality that we require from each agent, however the
anatomy of an agent can be broken down into three main
components: inter-agent communication, basic agent
functions, and the role/responsibilities of the specific agent
types.

C.1 Inter-Agent Communication

As mentioned above, a message-based scheme is used for
inter-agent communication. The Common Object Request
Broker Architecture (CORBA) [2] standard is an inherent
part of the ANA communication structure to enable
transparent cross-platform interoperability (network type,

programming language, operating system) and leverage
existing terrestrial standards. The ANA is built using the
open-source ADAPTIVE Communications Environment
(ACE) and The ACE ORB (TAO) [3]. ACE/TAO is an ideal
choice for several salient reasons:

• Rich use of software design patterns makes it both
robust and flexible

• Real-time extensions for many standard CORBA
Services

• A world-wide user community that continually
infuses it with improvements

It should be noted that while we have chosen C++ as our
implementation language, ACE/TAO directly supports
programming in C/C++ and Java (ZEN).

The ANA message format is based on the standard
developed by the Foundation for Intelligent Physical Agents
(FIPA) for Agent Communication Languages (ACL) [4]. The
description of an ANA Message in CORBA Interface
Definition Language (IDL) is shown in Table 1. A subset of
the message performatives and message fields were chosen
for simplicity, however it can easily be extended to support
the full FIPA specification. The first three fields are the

names of the sender, receiver, and the receiver of any replies.
Next is the timestamp of message transmission, along with a
globally unique conversation identifier that allows agents to
relate a message to a specific conversation. The header of the
message is a performative that describes the type of message,
and the last field is a sequence of the message payload data.
The particular meaning of a given message is specific to each
agent type’s inner language, and naturally two agents must
both comprehend a common language to converse.

Two CORBA services - the Notification Service and an
extended Event Service - are currently used by the ANA to
provide messaging support. The use of these services
depends on whether the conversing agents are collocated i.e.
on a single host or distributed i.e. resident on multiple hosts
on a spacecraft or multiple spacecrafts. Local inter-agent
communication relies on the Notification Service to deliver
ANA Messages via structured events [5]. The Notification
service was chosen because of its flexible event structure and
advanced filtering, however it does not currently provide an
inherent means of passing events between agents located on
different processors. The ANA uses the TAO Real Time
Event (RTEC) Service to handle such remote
communications. More specifically, a federated RTEC is
implemented to transparently connect the ANA agents that
are not collocated. Although the RTEC can be distributed
through federation, the simplicity of the real-time events
constrains the event filtering possibilities. A schematic
representation of the communication architecture is also
shown in Fig. 1.

TAO’s primary developer, the Distributed Object
Computing (DOC) group – now part of the Institute of
Software Integrated Systems (ISIS) at Vanderbilt University
- is our team member for this research, and is currently
enhancing the TAO Notification Service to be federated.

 Federated Event
Service

Component
(Remote Agent

Communication)

Notification
Service Component

(Data/Message Filtering
and Delivery)

Federated Naming
Service

Component
(Agent Locator)

Science Payload Sensors

Actuators

CORBA Layer

Executive
Agent

CORBA Layer

Executive
Agent

CORBA Layer

Computing
Agent

CORBA Layer

Computing
Agent

CORBA Layer

Computing
Agent

Agent

CORBA Layer

Science
Agent

CORBA Layer

Science
Agent

CORBA Layer

Computing
Agent

CORBA Layer

Computing
Agent

CORBA Layer

Computing
Agent

CORBA Layer

Computing
Agent
CORBA Layer

Gizmo
Agent

CORBA Layer

Gizmo
Agent

CORBA Layer

Comm.
Agent

CORBA Layer

Comm.
Agent

Fig. 1: Schematic of the Adaptive Network Architecture

Table 1: ANA Message IDL

// Subset of FIPA Message Performatives
enum Performative
{
 REQUEST,
 INFORM,
 AGREE,
 REFUSE,
 NOTUNDERSTOOD
};

// Modified FIPA ACL message structure
struct Message
{
 string sender;
 string receiver;
 string reply_to;
 long time_stamp;
 string conversation_id;

 Performative header;
 sequence<any> content;
};

With this added capability, the RTEC will soon be phased
out, resulting in a simpler, more robust architecture.

C.2 Base Agent Functionality

Each agent supports a basic level of functionality common
across all agent types, such as messaging, health reporting,
and telemetry handling. These fundamental capabilities are
provided for each specific agent through inheritance from a
parent ‘BaseAgent’ class.

To give insight into the common functionality support, the

BaseAgent interface definition in CORBA IDL is shown in
Table 2. First, all agents are identified by an agent type and a
unique name, which describes the specific agent, host
processor, and physical location where the agent is running.
During instantiation, each agent binds itself with the Naming
Service that currently runs on the ground station. This allows
agents to locate each other based on the naming scheme we
have designed.

All agents can be in one of two states, dozing or awake.
While in the dozing state, the agent’s acceptance of messages
and most internal processes are suspended. Generally, all
agents are instantiated in the dozing state and must be
explicitly commanded to awake. This capability of ‘job
control’ for an agent is provided by the Doze() and Wakeup()
interface calls.

All agents must report their health via heartbeats to a

designated agent at the specified HeartBeatRate. A heartbeat
message has an INFORM performative with the ‘HeartBeat’
structure as content. Once an agent is instantiated and sent an
initial Wakeup() call, the heartbeat messages are sent via the
Notification Service independent of the agent’s subsequent
operational state.

C.3 Agent Roles and Responsibilities

The roles and responsibilities for different aspects of a
distributed science mission are divided between several types
of component agents. The agent types currently implemented
are further subdivided into a subset that run on a spacecraft
(the “space” set) consisting of the Executive,
Communication, Science, Computing, and Gizmo Agents,
and another subset that resides on a ground station (the
“ground” set) consisting of a User Interface Agent. Each
agent type will be briefly described below.

C.3.1 Executive Agent

An Executive agent manages all agents on a single host,
including creation, state change, and health monitoring.
Continuing enhancements to the Executive Agent will
include the management of faults and system security
policies.

C.3.2 Communication Agent

The Communication Agent manages various aspects of
communication on a given host. This will entail management
of the communication hardware, communication services, as
well as the types and frequency of transmitted data. To
reduce system complexity, we have designed the
Communication Agent to be solely responsible for routing
telemetry to the ground. All agents in the space set format
their own unique telemetry as part of their heartbeat
processing, then transmit it to the Communication Agent as
an INFORM message. The individual messages are re-
assembled by the Communication Agent into a single
telemetry stream before being sent to the User Interface
agent.

The telemetry system is designed to be extremely flexible.
As is typical of spacecraft, each telemetry item is codified
with a unique identifier – its measurand ID. Based on the
operational environment, at any given time, each agent is free
to format and transmit selected items with no constraint on
either the number of items or the length of each item. Thus
the contents of the telemetry stream are dynamically variable.

Table 2: ANA BaseAgent IDL

// Agent types
enum AgentClasses
{
 EXEC, // Executive
 COMM, // Communication
 COMP, // Computing
 GIZMO, // Generic Gizmo
 SCIENCE,
 USERINTERFACE
};

// Agent states
enum StateType
{
 AWAKE,
 DOZING
};

// Heartbeat information
struct HeartBeat
{
 string sender;
 StateType CurrentState;
};

// Standardized agent interface
interface BaseAgent
{
 readonly attribute AgentClasses AgentType;
 attribute string AgentName;

 readonly attribute StateType ActivityState;
 //Request agent becomes dormant
 boolean Doze();
 //Request agent becomes active
 void Wakeup();

 attribute float HeartBeatRate;

 //Process incoming message
 void ProcessMessage();
};

C.3.3 Science Agent

Each Science Agent contains the logic associated with
achieving a specific science objective, and the numerical
processing generating the desired data products. The data
processing is constructed as a set of concurrent streams that
apply a sequential series of algorithms to the input data. The
output data products can then be redirected to other Science
Agents or User Interface Agents as specified in the mission
logic.

C.3.4 Computing Agent

One agent type that directly supports the Science Agents’
tasks is the Computing Agent. The Computing Agent
manages the computing resources, in terms of CPU
utilization, memory usage, and network throughput, for a for
the science processing conducted on a single processor. This
management is used to ensure efficient resource utilization
and real-time delivery of data products. Currently, the
Computing Agent performs only resource monitoring,
however a purely distributed negotiation protocol for
requesting remote computing resources has been
implemented to handle the resource allocation.

C.3.5 Gizmo Agent

The Gizmo Agent, was developed to manage interaction
and conflict resolution for accessing “negotiable” physical
devices, such as payload sensors. The Gizmo Agent is an
abstract parent class that presents a publish/subscribe
protocol for other agents to subscribe to data updates based
on data type, sampling rate, subscription duration, and
priority. Conflicting subscriptions are resolved by a priority
based scheduler. Direct interaction with each type of physical
device will be handled by a specific agent class that inherits
from the ‘Gizmo Agent’ base class, and contains the device-
specific interface code. A concrete realization of a Gizmo
agent has been implemented for a ‘Smart’ Camera
commercially developed by Carnegie Mellon University
(CMU) [6].

C.3.6 User Interface Agent

Finally, the User Interface Agent provides a unified means
for both autonomous interaction and manual ground user
interaction with the space set ANA agents. At present, it
provides visibility into those agents that have registered with
the Naming Service and for the processing, display, and
recording of telemetry transmitted from the space segment.

D. EXAMPLE SCIENCE MISSION: GAMMA RAY BURST
DETECTION

Although each agent has a particular role to play in the
ANA, they seldom work in isolation. Interaction between
multiple agents is necessary to complete complex, higher
level tasks. This section will illustrate some of these
interactions within the context of an example science mission
involving the detection of gamma ray bursts. For brevity, this

description focuses on the data acquisition process involving
the Science and Gizmo Agents; however the full mission
includes distributed onboard processing of images (e.g.
compression) and the telemetry downlink.

The goal of the example science mission is to detect and
capture images of a transient gamma ray burst event. The
physical system consists of a single smart camera as a
payload sensor, a single processing host, and a ground
station. A schematic of the experimental system is shown in
Fig. 2.

The smart camera can operate in two mutually exclusive
modes: a color tracking mode and an image capture mode. In
the color tracking mode, the smart camera’s onboard
processor finds the centroid of all pixels within an apriori
specified RGB color range at a rate of 17Hz. Single frames
can be captured by the camera at a slower rate of 1Hz in the
image capture mode.

Given our hardware configuration, the mission objectives
are best served by switching between the two camera modes
to ensure

• Rapid detection of a burst (via the color tracking
mode)

• Increased data collection during a burst (via the
image capture mode)

The logic for this mission can be captured in the interaction

diagram shown in Fig. 3.

After initialization, the Science Agent subscribes to the
Smart Camera Agent (a child of the Gizmo Agent class) to
receive color tracking data at the maximum sampling rate.
The Smart Camera Agent receives the SUBSCRIBE message,
schedules the subscription request, and sets the current
camera mode to the appropriate mode. As the smart camera
takes samples, they are encapsulated in INFORM messages
that are sent to the subscribing Science Agent. Once a burst is
detected (i.e. a nontrivial centroid is sent to the Science
Agent), the Science Agent changes its subscription by
requesting a single image frame by sending a new
SUBSCRIBE message with high priority. The Gizmo Agent
then reschedules the highest priority request (i.e. the image
capture subscription), and sets the new mode of the camera.
Once the image is captured, it is also sent to the Science
Agent via an INFORM message for further processing and

 Payload
(Mixed Realtime)
PC/104 “stack”

Wired
Ethernet

Ground
Station

CMU “Smart”
Camera

RS232

Fig. 2: Schematic of the experimental setup for the example science mission

downlink to the ground station. Subsequently, the Gizmo
Agent reschedules the subscriptions again, returning to the
color tracking mode. This cycle repeats throughout the
duration of the mission.

E. FUTURE WORK

The near-term target of the ANA is deployment and

verification on a hardware testbed containing a set of
heterogeneous computing platforms with heterogeneous
connectivity termed the Formation Computing Environment
(FCE). The FCE is an integral part of our Distributed
Systems Laboratory (DSL). Other assets that will come into
play for system demonstration are two classes of air-bearing
robots termed picoBots and microBots to simulate small
spacecraft and their formations, shown in Fig. 4. At present,
we are developing and verifying the ANA on two different

embedded PC/104 processing hosts (i.e. stacks) – an X-86
Pentium III and PowerPC (MIP405) PC/104, as well as a
simulated ground station – a X-86 Pentium IV workstation.
In order to satisfy hard real-time constraints of functions such
as spacecraft GNC, we run the ANA under the WindRiver
Tornado/VxWorks operating system on the Pentium III
processor. For science processing, the PowerPC processor
runs a small footprint GNU/Linux OS with RTAI real-time
extensions for both “soft” real-time and non real-time
processing. The ground station runs Windows. Fig. 5 is a
schematic showing the processor types, their roles, and the
end-to-end connectivity. Both the Pentium III and PowerPC
platforms can be mounted on a microBot to represent the
spacecraft and payload subsystems respectively. The
workstation represents ground mission control. Multiple
picoBots and microBots will be configured to represent
formations of heterogeneous spacecraft.

Since the inception of Phase I of this program, we have

made significant progress in the design and the
implementation of the infrastructure, particularly with regard
to the inter-agent communication. Extensive work yet
remains to provide the agents with the full capacity to exhibit
intelligent, adaptive behavior in order to meet mission
objectives. While such development will continue to evolve
incrementally over the next several years, much of the 1 year
Phase II will be devoted to incorporating additional
functionality for fault detection and recovery, improved
resource utilization, and mission planning. The space set
agents will, under the direction of the Executive Agent, detect
and respond to faults via autonomous macro (at the spacecraft
formation level) and micro (on a subsystem or lower level)
reconfiguration. Further additions of a Mission Operations
Agent and a Science Operations Agent will greatly enhance
the computational and autonomous decision making capacity
of the system as a whole. Initial verification of the latter will
take place by infusing these agents into the ground set. With
continued development, transfer of this capability to the
space set will lead to a progressively more autonomous
system.

CameraAgent
GizmoAgent

BurstAgent
ScienceAgent

SmartCamera
Gizmo

SUBSCRIBE TRACKING

SetMode(TRACKING)

[reschedule()]
CHANGE TRACKING

INFORM BURST

AGREE SUBSCRIBE

UpdateData(BURST)

SUBSCRIBE IMAGING
SetMode(IMAGING)

UpdateData(IMAGE)
INFORM IMAGE

Fig. 3: Science Mission Interaction Diagram

S/C Control
(Hard Realtime)
PC/104“stack”

Payload
(Mixed Realtime)
PC/104 “stack”

Wired
Ethernet

802.11 Wireless
Ethernet

Ground
Station

Fig. 5: Schematic of the Formation Computing Environment including

processor type, role, and connectivity

Fig. 4: Robotic assets of the Distributed Systems Laboratory

For increased flexibility, we will transition from using the
CORBA Naming Service to the CORBA Trading Service,
(akin to a “yellow pages”) as the Agent locator. This will free
us from an unnecessarily constrained scheme of finding
agents via name only. All agents will publish known
capabilities in addition to names as a means of determining
location. In addition, the Trading Service provides the
capability to automatically notify subscribed agents of
changes to its data base resulting from either departing or
newly joined agents.

To help complete the full ANA suite, a Navigation Agent

will be added to the space set. This will handle the Guidance
Navigation and Control functions of a spacecraft as well as
the higher-level constellation formation and maintenance.

F. CONCLUSIONS

Agent technology is now an established paradigm for
developing large complex software systems across many
varied domains, where autonomy and intelligence are
common central important themes. The ANA follows in the
tradition of multi-agent systems such as OASIS [7] deployed
and tested at the Sydney Airport, and the Remote Agent
Experiment flown on the NASA Deep Space 1 mission [8]. In
extending the capabilities of these predecessor systems, it
will be well poised to support and handle not only complex
space based science missions of heterogeneous makeup, but
also other large distributed systems that comprise missions
such as NASA’s Space Exploration Initiative.

We have successfully built the ANA over mature terrestrial
standards that will provide the same seamless operational
functionality to future missions with components distributed
both in space and ground. Improvements to these standards as
a result of this technology development are already beginning
to emerge e.g. performance optimizations and a significantly
reduced footprint make TAO even more feasible for use in

resource constrained real-time embedded systems. This work
has provided similar impetus for extending the capability of
the CORBA Notification Service to operate as a federation
with multiple options to configure the federation based on
available resources and mission specific needs.

We look forward to verifying the versatility and usefulness

of this technology on future earth, space, and planetary
missions. We are confident that it will come to represent an
important component of systems constructed to meet the
objectives of these missions.

ACKNOWLEDGMENT

We are greatly indebted to the Advanced Information
Systems Technology (AIST) program of the NASA
Earth-Sun System Technology Office (ESTO) whose
sponsorship has been instrumental in the development of this
technology.

REFERENCES

[1] N. Jennings, M. Wooldridge, Agent Technology:
Foundations, Applications, and Markets, Springer-Verlag,
1997
[2] http://www.omg.org/gettingstarted/corbafaq.htm
[3] www.cs.wustl.edu/~schmidt/TAO-users.html
[4] http://www.fipa.org/specs/fipa00061/
[5] http://www.omg.org/technology/documents/formal/
notification_service.htm
[6] http://www-2.cs.cmu.edu/~cmucam/home.html
[7] M. Georgeff, A. Rao, “Rational Software Agents: From
Theory to Practice”, Agent Technology: Foundations,
Applications, and Markets, pp. 139-160, Springer-Verlag,
1997
[8] N. Muscettola, et. al., “Validating the DS1 Remote Agent
Experiment”, Proceedings of the 5th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (iSAIRAS-99).

